El grafeno es un alótropo del carbono, un teselado hexagonal plano (como panal de abeja) formado por átomos de carbono y enlaces covalentes que se generan a partir de la superposición de los híbridos sp2 de los carbonos enlazados.
Propiedades destacadas de este material:
- Es muy flexible
- Es transparente
- Conductividad térmica y eléctrica altas.
- Elasticidad y dureza elevadas.
- (Sobre todo) Muy alta dureza: 200 veces mayor que la del acero, casi igual a la del diamante.
- Reacción química con otras sustancias para producir compuestos de diferentes propiedades. Esto lo dota de gran potencial de desarrollo.
- Soporte de radiación ionizante.
- Gran ligereza, como la fibra de carbono, pero más flexible.
- Menor efecto Joule: se calienta menos al conducir los electrones.
- Para una misma tarea que el silicio, menor consumo de electricidad.
- Generación de electricidad al ser alcanzado por la luz.
- Cuando una lámina de grafeno recibe algún daño que quiebra su estructura produciendo un agujero consigue atraer átomos de carbono situados en las proximidades para así reparar los huecos (se autorepara).
- Efecto Hall cuántico fraccionario.
Las propiedades del grafeno son ideales para utilizarlo como componente de circuitos integrados. Está dotado de alta movilidad de portadores, así como de bajo nivel de «ruido». Ello permite que se le utilice como canal en transistores de efecto campo (FET). La dificultad de utilizar grafeno estriba en la producción del mismo material en el sustrato adecuado. Investigadores están indagando métodos tales como transferencia de hojas de grafeno desde grafito (exfoliación) o crecimiento epitaxial (como la grafitización térmica de la superficie del carburo de silicio: SiC).
En diciembre de 2008, IBM anunció que habían fabricado y caracterizado transistores que operaban a frecuencias de 26 gigahercios (GHz). En febrero de 2010, la misma empresa anunció que la velocidad de estos nuevos transistores alcanzó los 100 GHz. En septiembre de 2010 se alcanzaron los 300 GHz.
Las publicaciones especializadas rebosan de artículos en los que se atribuye a esta estructura de carbono cualidad de «panacea universal» en la tecnología para reemplazo de dispositivos de silicio por grafeno. Pero no toda la comunidad científica comparte este optimismo.
Además, el grafeno carece de una banda de resistividad, propiedad esencial que le es inherente al silicio. Eso implica que el grafeno no puede dejar de conducir electricidad: no se puede apagar.
Baterías de grafeno para automoviles
Investigadores del Instituto Politécnico Rensselaer dirigido por el experto en nanomateriales Koratkar Nikhil en los Estados Unidos han desarrollado un nuevo ánodo basado en grafeno que puede ser cargado o descargado 10 veces más rápido que los ánodos de grafito que se utilizan actualmente en las baterías de litio.Para crear el material del ánodo los investigadores tomaron una hoja de papel de óxido de grafeno y posterior se introdujeron intencionalmente defectos utilizando para ello un láser o un flash de la cámara, esto produjo como resultado en el material innumerables grietas poros y otras imperfecciones, después de dicho proceso. Los iones de litio pueden utilizar las grietas en el óxido de papel de grafeno y atravesar rápidamente la hoja entera lo que significa cargas más rápidas en la batería.
Los investigadores afirman que este descubrimiento está listo para su comercialización y ya solicitaron una patente para este descubrimiento. El siguiente paso en su proyecto es conectar el ánodo nuevo con un cátodo de alta potencia y crear una batería completa.
Conductor
Un conductor eléctrico es un material que ofrece poca resistencia al movimiento de carga eléctrica.
Son materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales, como el cobre, el oro, el hierro y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua de mar) o cualquier material en estado de plasma.
Aplicaciones de los conductores:
- Conducir la electricidad de un punto a otro (pasar electrones a través del conductor; los electrones fluyen debido a la diferencia de potencial).
- Crear campos electromagnéticos al constituir bobinas y electroimanes.
- Modificar el voltaje al constituir transformadores.
Aislante
Un aislante eléctrico es un material con escasa capacidad de conducción de la electricidad, utilizado para separar conductores eléctricos evitando un cortocircuito y para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que de tocarse accidentalmente cuando se encuentran en tensión pueden producir una descarga. Los más frecuentemente utilizados son los materiales plásticos y las cerámicas. Las piezas empleadas en torres de alta tensión empleadas para sostener o sujetar los cables eléctricos sin que éstos entren en contacto con la estructura metálica de las torres se denominan aisladores.
El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción, que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material (para más detalles ver semiconductor).
Un material aislante de la electricidad tiene una resistencia teóricamente infinita. Algunos materiales, como el aire o el agua son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, aislante a temperatura ambiente y bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.
Los más frecuentemente utilizados son los materiales plásticos y las cerámicas. Las piezas empleadas en torres de alta tensión empleadas para sostener o sujetar los cables eléctricos sin que éstos entren en contacto con la estructura metálica de las torres se denominan aisladores.
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aislan con vidrio, porcelana u otro material cerámico.
El alambre de cobre se utiliza básicamente para fabricar cables eléctricos, así que el alambre más usado industrialmente es el que se hace de acero y de acero inoxidable.
El alambre normal de acero suele tener un tratamiento superficial de galvanizado para protegerla de la oxidación y corrosión y también hay alambre endurecido con proceso de temple.
Aplicaciones:
El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción, que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material (para más detalles ver semiconductor).
Un material aislante de la electricidad tiene una resistencia teóricamente infinita. Algunos materiales, como el aire o el agua son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, aislante a temperatura ambiente y bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.
Los más frecuentemente utilizados son los materiales plásticos y las cerámicas. Las piezas empleadas en torres de alta tensión empleadas para sostener o sujetar los cables eléctricos sin que éstos entren en contacto con la estructura metálica de las torres se denominan aisladores.
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aislan con vidrio, porcelana u otro material cerámico.
Alambre
Se denomina alambre a todo tipo de hilo delgado que se obtiene por estiramiento de los diferentes metales de acuerdo con la propiedad de ductilidad que poseen los mismos. Los principales metales para la producción de alambre son: hierro, cobre, latón, plata, aluminio, entre otros. Sin embargo, antiguamente se llamaba alambre al cobre y sus aleaciones de bronce y latón.
Hay muchos tipos y calidades de alambre de acuerdo con las aplicaciones que tengan. Asimismo el diámetro del alambre es muy variable y no hay un límite exacto cuando un hilo pasa a denominarse varilla o barra en vez de alambre. La principal característica del alambre es que permite enrollarse en rollos o bobinas de diferentes longitudes que facilitan su manipulación y transporte.El alambre de cobre se utiliza básicamente para fabricar cables eléctricos, así que el alambre más usado industrialmente es el que se hace de acero y de acero inoxidable.
El alambre normal de acero suele tener un tratamiento superficial de galvanizado para protegerla de la oxidación y corrosión y también hay alambre endurecido con proceso de temple.
Aplicaciones:
- Muelles y resortes;
- Alambrados espinados de fincas y edificios;
- Vallado en malla, rodeando fincas, edificios, etc;
- Cables de aceros para sujetar elementos sometidos a tracción (ascensores, grúas, etc.);
- Alambre recocido de fácil manipulación, para usos varios;
- Alambre corrugado para fabricar materiales de construcción;
- Alambre cromado o galvanizado para aplicaciones a la intemperie;
- Alambre especial lubricado para formar bobinas de gran tamaño;
- Alambre endurecido de alto contenido en carbono;
- Alambre de acero inoxidable para aplicaciones especiales.
Cable
Los cables cuyo propósito es conducir electricidad[1] se fabrican generalmente de cobre, debido a la excelente conductividad de este material, o de aluminio que aunque posee menor conductividad es más económico.
Generalmente cuenta con aislamiento en el orden de 500 µm hasta los 5 cm; dicho aislamiento es plástico, su tipo y grosor dependerá del nivel de tensión de trabajo, la corriente nominal, de la temperatura ambiente y de la temperatura de servicio del conductor.
Las partes generales de un cable eléctrico son:
Los cables eléctricos se pueden subdividir según:
Generalmente cuenta con aislamiento en el orden de 500 µm hasta los 5 cm; dicho aislamiento es plástico, su tipo y grosor dependerá del nivel de tensión de trabajo, la corriente nominal, de la temperatura ambiente y de la temperatura de servicio del conductor.
Las partes generales de un cable eléctrico son:
- Conductor: Elemento que conduce la corriente eléctrica y puede ser de diversos materiales metálicos. Puede estar formado por uno o varios hilos.
- Aislamiento: Recubrimiento que envuelve al conductor, para evitar la circulación de corriente eléctrica fuera del mismo.
- Capa de relleno: Material aislante que envuelve a los conductores para mantener la sección circular del conjunto.
- Cubierta: Está hecha de materiales que protejan mecánicamente al cable. Tiene como función proteger el aislamiento de los conductores de la acción de la temperatura, sol, lluvia, etc.
Los cables eléctricos se pueden subdividir según:
Nivel de tensión
- cables de muy baja tensión (hasta 50 V).
- cables de baja tensión (hasta 1000 V).
- cables de media tensión (hasta 30 kV).
- cables de alta tensión (hasta 66 kV).
- cables de muy alta tensión (por encima de los 770 kV).
Componentes
- Conductores (cobre, aluminio u otro metal).
- Aislamientos (materiales plásticos, elastoméricos, papel impregnado en aceite viscoso o fluido).
- Protecciones (pantallas, armaduras y cubiertas).
Número de conductores
- Unipolar: Un solo conductor.
- Bipolar: 2 conductores.
- Tripolar:3 conductores.
- Tetra polar: 4 conductores.
Materiales empleados
- Cobre.
- Aluminio.
- Almelec (aleación de Aluminio, Magnesio).
Flexibilidad del conductor
- Conductor rígido.
- Conductor flexible.
Aislamiento del conductor
- Aislamiento termoplástico:
- PVC - (policloruro de vinilo).
- PE - (polietileno).
- PCP - (policloropreno), neopreno o plástico.
- Aislamiento termoestable:
- XLPE - (polietileno reticulado).
- EPR - (etileno-propileno).
- MICC - Cable cobre-revestido Mineral-aislado.
Diferencia entre cable y alambre
El cable tiene más hilos, y por tanto es más flexible y fácil de manejar. Si lo doblas una y otra vez, es más difícil de que se rompa, como prueba puedes examinar el cable de una plancha, es muy flexible puesto que tiene muchos hilos en su interior.
La desventaja es que cada hilo provoca una pérdida de energía, aparte de generar un campo magnético que produce corrientes parasitas en la línea eléctrica. Debido a esto, un cable necesita ser de mayor calibre que un alambra para conducir la misma electricidad.
El alambre, es as eficiente en la transmisión eléctrica, no genera corrientes parasitas ni tantas perdidas de corriente como el cable. Puesto que pierde menos energía, el alambre puede ser de calibre menor y por tanto, genera importantes ahorras al usarse.
En general, el alambre se utiliza en instalaciones fijas, en la instalación de la casa o edificio debido a sus obvia ventajas.
El cable se usa en instalaciones móviles, o en aparatos de uso regular que necesitan conectarse y desconectarse de forma constante. Por ejemplo, en todos los electrodomésticos, ya que así se asegura que el cable no se rompa con el uso cotidiano de los aparatosCorriente eléctrica
CORRIENTE ELÉCTRICA: Amperes = culoms /seg
La corriente o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material. [1] Se debe al movimiento de las cargas (normalmente electrones) en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
CORRIENTE ELÉCTRICA: Amperes = culoms /seg
Voltaje
Voltaje = Diferencia de potencial
La tensión eléctrica o diferencia de potencial (también denominada voltaje ) es una magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos. También se puede definir como el trabajo por unidad de carga ejercido por el campo eléctrico sobre una partícula cargada para moverla entre dos posiciones determinadas. Se puede medir con un voltímetro.
Cuando se habla sobre una diferencia de potencial en un sólo punto, o potencial, se refiere a la diferencia de potencial entre este punto y algún otro donde el potencial se defina como cero.
Ley de ohm: V = I x R La ley de Ohm dice que la intensidad que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es lo contrario a la resistencia eléctrica.El voltaje es un sinónimo de tensión y de diferencia de potencial. En otras palabras, el voltaje es el trabajo por unidad de carga ejercido por el campo eléctrico sobre una partícula para que ésta se mueva de un lugar a otro. En el Sistema Internacional de Unidades, dicha diferencia de potencial se mide en voltios (V), y esto determina la categorización en “bajo” o “alto voltaje”.
Un voltio es la unidad de potencial eléctrico, fuerza electromotriz y voltaje. Algunos voltajes comunes son el de una neurona (75 mV), una batería o pila no recargable alcalina (1,5 V), una recargable de litio (3,75 V), un sistema eléctrico de automóvil (12 V), la electricidad en una vivienda (230 en Europa, Asia y África, 120 en Norteamérica y 220 algunos países de Sudamérica), el riel de un tren (600 a 700 V), una red de transporte de electricidad de alto voltaje (110 kV) y un relámpago (100 MV).
Alto Voltaje
El término “alto voltaje” caracteriza circuitos eléctricos en los cuales el nivel de voltaje usado requiere medidas de aislamiento y seguridad. ESto ocurre, por ejemplo, en sistemas eléctricos de alto nivel, en salas de rayos X, y en otros ámbitos de la ciencia y la investigación física. La definición de “alto voltaje” depende de las circunstancias, pero se consideran para determinarlo la posibilidad de que el circuito produzca un “chispazo” eléctrico en el aire, o bien, que el contacto o proximidad al circuito provoque un shock eléctrico. Un shock eléctrico de magnitud aplicado a un ser humano u otros seres vivos puede producir una fibrilación cardíaca letal. Por ejemplo, el golpe de un relámpago en caso de tormenta sobre una persona a menudo es causa de muerte.Bajo voltaje
Voltaje que según los estándares de ANSI/IEEE es de 1.000 voltios o inferior; los circuitos que operan con este tipo de voltaje no requieren una red de protecciónCircuitos
Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistencias, inductores, condensadores, fuentes, interruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores) y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.TermostatoUn termostato es el componente de un sistema de control simple que abre o cierra un circuito eléctrico en función de la temperatura.Su versión más simple consiste en una lámina metálica como la que utilizan los equipos de aire acondicionado para apagar o encender el compresor.Otro ejemplo lo podemos encontrar en los motores de combustión interna, donde controlan el flujo del líquido refrigerante que regresa al radiador dependiendo de la temperatura del motor.Los termostatos electrónicos cada vez son más habituales debido a sus ventajas.
- Pueden estar libres de partes móviles y contactos que sufren deterioro.
- Se puede configurar tanto una temperatura como un umbral o un tiempo mínimo entre activaciones.
- Se pueden integrar fácilmente en un sistema con más funciones como programador horario con otros sucesos.
- Con un controlador PID puede hacer una gestión más inteligente.
- En un frigorífico puede evitar que se encienda si hay una subida breve de temperatura, por ejemplo, al abrir la nevera y ventilarse el aire interior.
- En el sistema de refrigeración de un vehículo se puede utilizar una bomba eléctrica comandada electrónicamente de modo que no encienda en el periodo de calentamiento (evitando gastar energía inútilmente) y variando su velocidad según la demanda de potencia. Un sistema mecánico tal vez no podría eliminar bien el calor acumulado a pocas RPM y en altas podría requerir excesiva potencia para la necesidad de refrigeración.[1]
- En una casa un termostato se puede complementar con una programación según la hora, el día de la semana, otros eventos o según la eficiencia.
- En un aire acondicionado residencial se puede programar tiempos mínimos de compresor detenido para evitar que el compresor una vez detenido no encienda demasiado pronto, evitando problemas de arranque y prolongando la vida útil.
- Hay motores eléctricos (generalmente de grandes potencias) que incluyen un termistor tipo ptc o ntc en la bobina para poder proteger el bobinado de recalentamientos de manera mas rápida y precisa que un termostato mecánico tipo bimetal.
Sensor
Un sensor o captador, como prefiera llamársele, no es más que un dispositivo diseñado para recibir información de una magnitud del exterior y transformarla en otra magnitud, normalmente eléctrica, que seamos capaces de cuantificar y manipular.
Normalmente estos dispositivos se encuentran realizados mediante la utilización de componentes pasivos (resistencias variables, PTC, NTC, LDR, etc... todos aquellos componentes que varían su magnitud en función de alguna variable), y la utilización de componentes activos.
Caracteristicas:
- Rango de medida: dominio en la magnitud medida en el que puede aplicarse el sensor.
- Precisión: es el error de medida máximo esperado.
- Offset o desviación de cero: valor de la variable de salida cuando la variable de entrada es nula. Si el rango de medida no llega a valores nulos de la variable de entrada, habitualmente se establece otro punto de referencia para definir el offset.
- Linealidad o correlación lineal.
- Sensibilidad de un sensor: suponiendo que es de entrada a salida y la variación de la magnitud de entrada.
- Resolución: mínima variación de la magnitud de entrada que puede apreciarse a la salida.
- Rapidez de respuesta: puede ser un tiempo fijo o depender de cuánto varíe la magnitud a medir. Depende de la capacidad del sistema para seguir las variaciones de la magnitud de entrada.
- Derivas: son otras magnitudes, aparte de la medida como magnitud de entrada, que influyen en la variable de salida. Por ejemplo, pueden ser condiciones ambientales, como la humedad, la temperatura u otras como el envejecimiento (oxidación, desgaste, etc.) del sensor.
- Repetitividad: error esperado al repetir varias veces la misma medida.
Motor magnético
Los Motores magnéticos están construidos basados en el principio magnético, en la que dos imanes se repelen entre sí cuando se colocan uno frente al otro con la misma polaridad.
Hace solo 100 años!! Comenzó a circular el primer coche propulsado por gasolina,
y ahora 100 años después van a comenzar a circular por las carreteras de todo el
mundo los primeros coches eléctricos fabricados en serie. Éstos consumen
baterías que deben ser mantenidas y recargadas con excesiva asiduidad. El motor
magnético no necesita ningún mantenimiento o carga de ningún tipo. Ya que no se
propulsa por baterías (la única que dispones es para iniciar el motor magnético,
luego ya va él solo).
El concepto de estos motores es una idea que ya tiene décadas de haber sido esbozado: basicamente, imanes con diferentes polaridades puestos en determinado orden pueden hacer girar un rotor a través del rechazo entre ellos.
La simple idea se presenta como una solución viable a los problemas energéticos, aunque cuenta con críticos que cuestionan desde la aplicación práctica a gran escala de estos proyectos hasta los costos.
Como sea el caso, desde mediados del año pasado el proyecto argentino Torian III intenta ganarse un lugar en el debate y, seguramente, cnseguir alguna clase de financiación para mejorar sus desarrollos. Viendolo funcionar, de lo que no caben dudas es que quizá el proyecto merezca ser, cuanto menos, observado.
La simple idea se presenta como una solución viable a los problemas energéticos, aunque cuenta con críticos que cuestionan desde la aplicación práctica a gran escala de estos proyectos hasta los costos.
Como sea el caso, desde mediados del año pasado el proyecto argentino Torian III intenta ganarse un lugar en el debate y, seguramente, cnseguir alguna clase de financiación para mejorar sus desarrollos. Viendolo funcionar, de lo que no caben dudas es que quizá el proyecto merezca ser, cuanto menos, observado.
Magnetismo
El magnetismo es un fenómeno físico por el que los objetos ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influidos, de mayor o menor forma, por la presencia de un campo magnético.
El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.
Cada electrón es, por su naturaleza, un pequeño imán (véase momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.
Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético). De nuevo, en general el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones los movimientos pueden alinearse y producir un campo magnético total medible.
El comportamiento magnético de un material depende de la estructura del material y, particularmente, de la configuración electrónica
La corriente continua la producen las baterías, las pilas y las dinamos. Entre los extremos de cualquiera de estos generadores se genera una tensión constante que no varia con el tiempo, por ejemplo si la pila es de 12 voltios, todo los receptores que se conecten a la pila estarán siempre a 12 voltios (a no ser que la pila este gastada). Además al conectar el receptor (una lámpara por ejemplo) la corriente que circula por el circuito es siempre constante (mismo número de electrones) , y no varia de dirección de circulación, siempre va en la misma dirección, es por eso que siempre el polo + y el negativo son siempre los mismos. Luego en CC (corriente continua o DC) la tensión siempre es la misma y la Intensidad de corriente también
El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.
Cada electrón es, por su naturaleza, un pequeño imán (véase momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.
Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético). De nuevo, en general el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones los movimientos pueden alinearse y producir un campo magnético total medible.
El comportamiento magnético de un material depende de la estructura del material y, particularmente, de la configuración electrónica
Corriente continua
La corriente continua o corriente directa (CC en español, en inglés DC, de Direct Current) es el flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial. A diferencia de la corriente alterna (CA en español, AC en inglés), en la corriente continua las cargas eléctricas circulan siempre en la misma dirección (es decir, los terminales de mayor y de menor potencial son siempre los mismos). Aunque comúnmente se identifica la corriente continua con la corriente constante (por ejemplo la suministrada por una batería), es continua toda corriente que mantenga siempre la misma polaridad.La corriente continua la producen las baterías, las pilas y las dinamos. Entre los extremos de cualquiera de estos generadores se genera una tensión constante que no varia con el tiempo, por ejemplo si la pila es de 12 voltios, todo los receptores que se conecten a la pila estarán siempre a 12 voltios (a no ser que la pila este gastada). Además al conectar el receptor (una lámpara por ejemplo) la corriente que circula por el circuito es siempre constante (mismo número de electrones) , y no varia de dirección de circulación, siempre va en la misma dirección, es por eso que siempre el polo + y el negativo son siempre los mismos. Luego en CC (corriente continua o DC) la tensión siempre es la misma y la Intensidad de corriente también
Corriente alterna
Este tipo de corriente es producida por los alternadores y es la que se genera en las centrales eléctricas. La corriente que usamos en las viviendas es corriente alterna (enchufes).
En este tipo de corriente la intensidad varia con el tiempo (numero de electrones), además cambia de sentido de circulación a razón de 50 veces por segundo (frecuencia 50Hz). Según esto también la tensión generada entre los dos bornes (polos) varia con el tiempo en forma de onda senoidal (ver gráfica), no es constante. Veamos como es la gráfica de la tensión en corriente alterna.
Esta onda senoidal se genera 50 veces cada segundo, es decir tiene una frecuencia de 50Hz (hertzios), en EEUU es de 60Hz. Como vemos pasa 2 veces por 0V (voltios) y 2 veces por la tensión máxima que es de 325V. Es tan rápido cuando no hay tensión que los receptores no lo aprecian y no se nota, excepto los fluorescentes (efecto estroboscópico). Además vemos como a los 10ms (milisegundos) la dirección cambia y se invierten los polos, ahora llega a una tensión máxima de -325V (tensión negativa).
La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua la elevación de la tensión se logra conectando dínamos en serie, lo cual no es muy práctico, al contrario en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente tales como la histéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico y comercial de forma cómoda y segura
En este tipo de corriente la intensidad varia con el tiempo (numero de electrones), además cambia de sentido de circulación a razón de 50 veces por segundo (frecuencia 50Hz). Según esto también la tensión generada entre los dos bornes (polos) varia con el tiempo en forma de onda senoidal (ver gráfica), no es constante. Veamos como es la gráfica de la tensión en corriente alterna.
La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua la elevación de la tensión se logra conectando dínamos en serie, lo cual no es muy práctico, al contrario en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente tales como la histéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico y comercial de forma cómoda y segura
Corriente pulsante
- Por corrientes pulsantes entendemos aquellas que usan una corriente continua modificada, a modo de impulsos, durante las cuales fluye la corriente en pequeñas fracciones de tiempo separados por intervalos de pausas, es decir, a impulsos.
La corriente pulsatoria es una corriente continua que sufre cambios regulares de magnitud a partir de un valor constante. Los cambios pueden ser en intensidad o en tensión. Estos cambios o pulsos son siempre en el mismo sentido de la corriente. Por eso todos los tipos de corrientes alternas, ya sean cuadradas, sinusoidales o en sierra no son pulsatoria.
Frecuencia
Es una magnitud que mide el número de repeticiones por unidad de tiempo de cualquier fenómeno o suceso periódico.
Para calcular la frecuencia de un suceso, se contabilizan un número de ocurrencias de este teniendo en cuenta un intervalo temporal, luego estas repeticiones se dividen por el tiempo transcurrido. Según el Sistema Internacional (SI), la frecuencia se mide en hercios (Hz), en honor a Heinrich Rudolf Hertz. Un hercio es la frecuencia de un suceso o fenómeno repetido una vez por segundo. Así, un fenómeno con una frecuencia de dos hercios se repite dos veces por segundo. Esta unidad se llamó originariamente «ciclo por segundo» (cps). Otras unidades para indicar la frecuencia son revoluciones por minuto (rpm). Las pulsaciones del corazón y el tempo musical se miden en «pulsos por minuto»
La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor longitud de onda y viceversa. La frecuencia f es igual a la velocidad v de la onda, dividido por la longitud de onda λ (lambda)
Cuando las ondas viajan de un medio a otro, como por ejemplo de aire a agua, la frecuencia de la onda se mantiene constante, cambiando sólo su longitud de onda y la velocidad.
Por el efecto Doppler, la frecuencia es una magnitud invariable en el universo. Es decir, no se puede modificar por ningún proceso físico excepto por su velocidad de propagación o longitud de onda.
Para calcular la frecuencia de un suceso, se contabilizan un número de ocurrencias de este teniendo en cuenta un intervalo temporal, luego estas repeticiones se dividen por el tiempo transcurrido. Según el Sistema Internacional (SI), la frecuencia se mide en hercios (Hz), en honor a Heinrich Rudolf Hertz. Un hercio es la frecuencia de un suceso o fenómeno repetido una vez por segundo. Así, un fenómeno con una frecuencia de dos hercios se repite dos veces por segundo. Esta unidad se llamó originariamente «ciclo por segundo» (cps). Otras unidades para indicar la frecuencia son revoluciones por minuto (rpm). Las pulsaciones del corazón y el tempo musical se miden en «pulsos por minuto»
La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor longitud de onda y viceversa. La frecuencia f es igual a la velocidad v de la onda, dividido por la longitud de onda λ (lambda)
Cuando las ondas viajan de un medio a otro, como por ejemplo de aire a agua, la frecuencia de la onda se mantiene constante, cambiando sólo su longitud de onda y la velocidad.
Por el efecto Doppler, la frecuencia es una magnitud invariable en el universo. Es decir, no se puede modificar por ningún proceso físico excepto por su velocidad de propagación o longitud de onda.
Periodo
Período o periodo, es palabra que deriva del latín periŏdus.[1] Este término se utiliza regularmente para designar al intervalo de tiempo necesario para completar un ciclo repetitivo, o simplemente el espacio de tiempo que dura algo.
- En física, período de oscilación es el intervalo de tiempo entre 2 puntos equivalentes de una onda u oscilación, también se puede asociar a la frecuencia mediante la relación:
Periodo= 1/frecuencia
Monofasico
En ingeniería eléctrica, un sistema monofásico es un sistema de producción, distribución y consumo de energía eléctrica formado por una única corriente alterna o fase y por lo tanto todo el voltaje varía de la misma forma. La distribución monofásica de la electricidad se suele usar cuando las cargas son principalmente de iluminación y de calefacción, y para pequeños motores eléctricos. Un suministro monofásico conectado a un motor eléctrico de corriente alterna no producirá un campo magnético giratorio, por lo que los motores monofásicos necesitan circuitos adicionales para su arranque, y son poco usuales para potencias por encima de los 10 kW. El voltaje y la frecuencia de esta corriente dependen del país o región, siendo 230 y 115 Voltios los valores más extendidos para el voltaje y 50 o 60 Hercios para la frecuencia.
En ingeniería eléctrica, un sistema monofásico es un sistema de producción, distribución y consumo de energía eléctrica formado por una única corriente alterna o fase y por lo tanto todo el voltaje varía de la misma forma. La distribución monofásica de la electricidad se suele usar cuando las cargas son principalmente de iluminación y de calefacción, y para pequeños motores eléctricos. Un suministro monofásico conectado a un motor eléctrico de corriente alterna no producirá un campo magnético giratorio, por lo que los motores monofásicos necesitan circuitos adicionales para su arranque, y son poco usuales para potencias por encima de los 10 kW. El voltaje y la frecuencia de esta corriente dependen del país o región, siendo 230 y 115 Voltios los valores más extendidos para el voltaje y 50 o 60 Hercios para la frecuencia.
Bifasico
En ingeniería eléctrica un sistema bifásico es un sistema de producción y distribución de energía eléctrica basado en dos tensiones eléctricas alternas desfasadas en su frecuencia 90º. En un generador bifásico, el sistema está equilibrado y simétrico cuando la suma vectorial de las tensiones es nula (punto neutro)
En ingeniería eléctrica un sistema bifásico es un sistema de producción y distribución de energía eléctrica basado en dos tensiones eléctricas alternas desfasadas en su frecuencia 90º. En un generador bifásico, el sistema está equilibrado y simétrico cuando la suma vectorial de las tensiones es nula (punto neutro)
Trifasico
En ingeniería eléctrica un sistema trifásico es un sistema de producción, distribución y consumo de energía eléctrica formado por tres corrientes alternas monofásicas de igual frecuencia y amplitud (y por consiguiente, valor eficaz) que presentan una cierta diferencia de fase entre ellas, en torno a 120°, y están dadas en un orden determinado. Cada una de las corrientes monofásicas que forman el sistema se designa con el nombre de fase.
Un sistema trifásico de tensiones se dice que es equilibrado cuando sus corrientes son iguales y están desfasados simétricamente.
Cuando alguna de las condiciones anteriores no se cumple (tensiones diferentes o distintos desfases entre ellas), el sistema de tensiones es un desequilibrado o más comúnmente llamado un sistema desbalanceado. Recibe el nombre de sistema de cargas desequilibradas el conjunto de impedancias distintas que dan lugar a que por el receptor circulen corrientes de amplitudes diferentes o con diferencias de fase entre ellas distintas a 120°, aunque las tensiones del sistema o de la línea sean equilibradas o balanceadas.
El sistema trifásico presenta una serie de ventajas como son la economía de sus líneas de transporte de energía (hilos más finos que en una línea monofásica equivalente) y de los transformadores utilizados, así como su elevado rendimiento de los receptores, especialmente motores, a los que la línea trifásica alimenta con potencia constante y no pulsada, como en el caso de la línea monofásica.
Un sistema trifásico de tensiones se dice que es equilibrado cuando sus corrientes son iguales y están desfasados simétricamente.
Cuando alguna de las condiciones anteriores no se cumple (tensiones diferentes o distintos desfases entre ellas), el sistema de tensiones es un desequilibrado o más comúnmente llamado un sistema desbalanceado. Recibe el nombre de sistema de cargas desequilibradas el conjunto de impedancias distintas que dan lugar a que por el receptor circulen corrientes de amplitudes diferentes o con diferencias de fase entre ellas distintas a 120°, aunque las tensiones del sistema o de la línea sean equilibradas o balanceadas.
El sistema trifásico presenta una serie de ventajas como son la economía de sus líneas de transporte de energía (hilos más finos que en una línea monofásica equivalente) y de los transformadores utilizados, así como su elevado rendimiento de los receptores, especialmente motores, a los que la línea trifásica alimenta con potencia constante y no pulsada, como en el caso de la línea monofásica.
Playtech casinos offering up to $4,000 jackpot
ResponderEliminarIn an exclusive interview with Wynn Resorts 정읍 출장샵 chief executive officer 천안 출장마사지 Rick Gray, 거제 출장안마 Johnson said that 통영 출장샵 there will be 포천 출장안마 $1.5 million jackpot generated for the slot game