Multimetro
Es un instrumento eléctrico portátil para medir directamente magnitudes eléctricas activas como corrientes y potenciales (tensiones) o pasivas como resistencias, capacidades y otras. Las medidas pueden realizarse para corriente continua o alterna y en varios márgenes de medida cada una. Los hay analógicos y posteriormente se han introducido los digitales cuya función es la misma (con alguna variante añadida).
Es un aparato muy versátil, que se basa en la utilización de un instrumento de medida, un galvanómetro muy sensible que se emplea para todas las determinaciones. Para poder medir cada una de las magnitudes eléctricas, el galvanómetro se debe completar con un determinado circuito eléctrico que dependerá también de dos características del galvanómetro: la resistencia interna (Ri) y la inversa de la sensibilidad. Esta última es la intensidad que, aplicada directamente a los bornes del galvanómetro, hace que la aguja llegue al fondo de escala.
Además del galvanómetro, el polímetro consta de los siguientes elementos: La escala múltiple por la que se desplaza una sola aguja, permite leer los valores de las diferentes magnitudes en los distintos márgenes de medida. Un conmutador permite cambiar la función del polímetro para que actúe como medidor en todas sus versiones y márgenes de medida. La misión del conmutador es seleccionar en cada caso el circuito interno que hay que asociar al instrumento de medida para realizar cada medición. Dos o más bornas eléctricas permiten conectar el polímetro a los circuitos o componentes exteriores cuyos valores se pretenden medir. Las bornas de acceso suelen tener colores para facilitar que las conexiones exteriores se realicen de forma correcta.
Cuando se mide en corriente continua, suele ser de color rojo la de mayor potencial ( o potencial + ) y de color negro la de menor potencial ( o potencial -). La parte izquierda de la figura (Esquema 1) es la utilizada para medir en corriente continua y se puede observar dicha polaridad. La parte derecha de la figura es la utilizada para medir en corriente alterna, cuya diferencia básica es que contiene un puente de diodos para rectificar la corriente y poder finalmente medir con el galvanómetro.
El polímetro está dotado de una pila interna para poder medir las magnitudes pasivas. También posee un ajuste de cero, necesario para la medida de resistencias.
Resistencias
Se le llama resistencia eléctrica a la mayor o menor oposición que tienen los electrones para desplazarse a través de un conductor. La unidad de resistencia en el sistema internacional es el ohm, que se representa con la letra griega omega (Ω), en honor al físico alemán George Ohm, quien descubrió el principio que ahora lleva su nombre.
Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.
Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nula.
Su símbolo es:
Por su composición, podemos distinguir varios tipos de resistencias:
- De hilo bobinado (wirewound)
- Carbón prensado (carbon composition)
- Película de carbón (carbon film)
- Película óxido metálico (metal oxide film)
- Película metálica (metal film)
- Metal vidriado (metal glaze)
- Dependientes de la temperatura (PTC y NTC)
- Resistencias variables, potenciómetros y reostatos
Resistencias de hilo bobinado.- Fueron de los primeros tipos en fabricarse, y aún se utilizan cuando se requieren potencias algo elevadas de disipación. Están constituidas por un hilo conductor bobinado en forma de hélice o espiral (a modo de rosca de tornillo) sobre un sustrato cerámico.Los coeficientes de temperatura de las resistencias bobinadas son extremadamente pequeños. Las resistencias típicas de carbón tienen un coeficiente de temperatura del orden de decenas de veces mayor, lo que ocasiona que las resistencias bobinadas sean empleadas cuando se requiere estabilidad térmica.
Un inconveniente de este tipo de resistencias es que al estar constituida de un arrollamiento de hilo conductor, forma una bobina, y por tanto tiene cierta inducción, aunque su valor puede ser muy pequeño, pero hay que tenerlo en cuenta si se trabaja con frecuencias elevadas de señal.Por tanto, elegiremos este tipo de resistencia cuando 1) necesitemos potencias de algunos watios y resistencias no muy elevadas 2) necesitemos gran estabilidad térmica 3) necesitemos gran estabilidad del valor de la resistencia a lo largo del tiempo, pues prácticamente permanece inalterado su valor durante mucho tiempo.
Resistencias de carbón prensado.- Estas fueron también de las primeras en fabricarse en los albores de la electrónica. Están constituidas en su mayor parte por grafito en polvo, el cual se prensa hasta formar un tubo.
Las patas de conexión se implementaban con hilo enrollado en los extremos del tubo de grafito, y posteriormente se mejoró el sistema mediante un tubo hueco cerámico (figura inferior) en el que se prensaba el grafito en el interior y finalmente se disponian unas bornas a presión con patillas de conexión.
Las resistencias de este tipo son muy inestables con la temperatura, tienen unas tolerancias de fabricación muy elevadas, en el mejor de los casos se consigue un 10% de tolerancia, incluso su valor óhmico puede variar por el mero hecho de la soldadura, en el que se somete a elevadas temperaturas al componente. Además tienen ruido térmico también elevado, lo que las hace poco apropiadas para aplicaciones donde el ruido es un factor crítico, tales como amplificadores de micrófono, fono o donde exista mucha ganancia. Estas resistencias son también muy sensibles al paso del tiempo, y variarán ostensiblemente su valor con el transcurso del mismo.
Resistencias de película de carbón.- Este tipo es muy habitual hoy día, y es utilizado para valores de hasta 2 watios. Se utiliza un tubo cerámico como sustrato sobre el que se deposita una película de carbón.
Para obtener una resistencia más elevada se practica una hendidura hasta el sustrato en forma de espiral, tal como muestra (b) con lo que se logra aumentar la longitud del camino eléctrico, lo que equivale a aumentar la longitud del elemento resistivo.
Resistencias de película de óxido metálico.- Son muy similares a las de película de carbón en cuanto a su modo de fabricación, pero son más parecidas, eléctricamente hablando a las de película metálica. Se hacen igual que las de película de carbón, pero sustituyendo el carbón por una fina capa de óxido metálico (estaño o latón). Estas resistencias son más caras que las de película metálica, y no son muy habituales. Se utilizan en aplicaciones militares (muy exigentes) o donde se requiera gran fiabilidad, porque la capa de óxido es muy resistente a daños mecánicos y a la corrosión en ambientes húmedos.
Resistencias de película metálica.- Este tipo de resistencia es el que mayoritariamente se fabrica hoy día, con unas características de ruido y estabilidad mejoradas con respecto a todas las anteriores. Tienen un coeficiente de temperatura muy pequeño, del orden de 50 ppm/°C (partes por millón y grado Centígrado). También soportan mejor el paso del tiempo, permaneciendo su valor en ohmios durante un mayor período de tiempo. Se fabrican este tipo de resistencias de hasta 2 watios de potencia, y con tolerancias del 1% como tipo estándar.
Resistencias dependientes de la temperatura.- Aunque todas las resistencias, en mayor o menor grado, dependen de la temperatura, existen unos dispositivos específicos que se fabrican expresamente para ello, de modo que su valor en ohmios dependa "fuertemente" de la temperatura. Se les denomina termistores y como cabía esperar, poseen unos coeficientes de temperatura muy elevados, ya sean positivos o negativos. Coeficientes negativos implican que la resistencia del elemento disminuye según sube la temperatura, y coeficientes positivos al contrario, aumentan su resistencia con el aumento de la temperatura. El silicio, un material semiconductor, posee un coeficiente de temperatura negativo. A mayor temperatura, menor resistencia. Esto ocasiona problemas, como el conocido efecto de "avalancha térmica" que sufren algunos dispositivos semiconductores cuando se eleva su temperatura lo suficiente, y que puede destruir el componente al aumentar su corriente hasta sobrepasar la corriente máxima que puede soportar.
A los dispositivos con coeficiente de temperatura negativo se les denomina NTC (negative temperature coefficient).
A los dispositivos con coeficiente de temperatura positivo se les denomina PTC (positive temperature coefficient).
Una aplicación típica de un NTC es la protección de los filamentos de válvula, que son muy sensibles al "golpe" de encendido o turn-on. Conectando un NTC en serie protege del golpe de encendido, puesto que cuando el NTC está a temperatura ambiente (frío, mayor resistencia) limita la corriente máxima y va aumentando la misma según aumenta la temperatura del NTC, que a su vez disminuye su resistencia hasta la resistencia de régimen a la que haya sido diseñado. Hay que elegir correctamente la corriente del dispositivo y la resistencia de régimen, así como la tensión que caerá en sus bornas para que el diseño funcione correctamente.
A los dispositivos con coeficiente de temperatura negativo se les denomina NTC (negative temperature coefficient).
A los dispositivos con coeficiente de temperatura positivo se les denomina PTC (positive temperature coefficient).
Una aplicación típica de un NTC es la protección de los filamentos de válvula, que son muy sensibles al "golpe" de encendido o turn-on. Conectando un NTC en serie protege del golpe de encendido, puesto que cuando el NTC está a temperatura ambiente (frío, mayor resistencia) limita la corriente máxima y va aumentando la misma según aumenta la temperatura del NTC, que a su vez disminuye su resistencia hasta la resistencia de régimen a la que haya sido diseñado. Hay que elegir correctamente la corriente del dispositivo y la resistencia de régimen, así como la tensión que caerá en sus bornas para que el diseño funcione correctamente.
Condensador
Un condensador (en inglés, capacitor,[1] [2] nombre por el cual se le conoce frecuentemente en el ámbito de la electrónica y otras ramas de la física aplicada), es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico. Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total.
Aunque desde el punto de vista físico un condensador no almacena carga ni corriente eléctrica, sino simplemente energía mecánica latente; al ser introducido en un circuito se comporta en la práctica como un elemento "capaz" de almacenar la energía eléctrica que recibe durante el periodo de carga, la misma energía que cede después durante el periodo de descarga.
Símbolo:
Aunque desde el punto de vista físico un condensador no almacena carga ni corriente eléctrica, sino simplemente energía mecánica latente; al ser introducido en un circuito se comporta en la práctica como un elemento "capaz" de almacenar la energía eléctrica que recibe durante el periodo de carga, la misma energía que cede después durante el periodo de descarga.
Símbolo:
- Capacidad: Se mide en Faradios (F), aunque esta unidad resulta tan grande que se suelen utilizar varios de los submúltiplos, tales como microfaradios (µF=10-6 F ), nanofaradios (nF=10-9 F) y picofaradios (pF=10-12 F).
- Tensión de trabajo: Es la máxima tensión que puede aguantar un condensador, que depende del tipo y grososr del dieléctrico con que esté fabricado. Si se supera dicha tensión, el condensador puede perforarse (quedar cortocircuitado) y/o explotar. En este sentido hay que tener cuidado al elegir un condensador, de forma que nunca trabaje a una tensión superior a la máxima.
- Tolerancia: Igual que en las resistencias, se refiere al error máximo que puede existir entre la capacidad real del condensador y la capacidad indicada sobre su cuerpo.
- Polaridad: Los condensadores electrolíticos y en general los de capacidad superior a 1 µF tienen polaridad, eso es, que se les debe aplicar la tensión prestando atención a sus terminales positivo y negativo. Al contrario que los inferiores a 1µF, a los que se puede aplicar tensión en cualquier sentido, los que tienen polaridad pueden explotar en caso de ser ésta la incorrecta.
TIPOS:
- Electrolíticos. Tienen el dieléctrico formado por papel impregnado en electrólito. Siempre tienen polaridad, y una capacidad superior a 1 µF. Arriba observamos claramente que el condensador nº 1 es de 2200 µF, con una tensión máxima de trabajo de 25v. (Inscripción: 2200 µ / 25 V).
Abajo a la izquierda vemos un esquema de este tipo de condensadores y a la derecha vemos unos ejemplos de condensadores electrolíticos de cierto tamaño, de los que se suelen emplear en aplicaciones eléctricas (fuentes de alimentación, etc...). - Electrolíticos de tántalo o de gota. Emplean como dieléctrico una finísima película de óxido de tantalio amorfo , que con un menor espesor tiene un poder aislante mucho mayor. Tienen polaridad y una capacidad superior a 1 µF. Su forma de gota les da muchas veces ese nombre.
- De poliester metalizado MKT. Suelen tener capacidades inferiores a 1 µF y tensiones de trabajo a partir de 63v. Más abajo vemos su estructura: dos láminas de policarbonato recubierto por un depósito metálico que se bobinan juntas. Aquí al lado vemos un detalle de un condensador plano de este tipo, donde se observa que es de 0.033 µF y 250v. (Inscripción: 0.033 K/ 250 MKT).
- De poliéster. Son similares a los anteriores, aunque con un proceso de fabricación algo diferente. En ocasiones este tipo de condensadores se presentan en forma plana y llevan sus datos impresos en forma de bandas de color, recibiendo comúnmente el nombre de condensadores "de bandera". Su capacidad suele ser como máximo de 470 nF.
- Cerámico "de lenteja" o "de disco". Son los cerámicos más corrientes. Sus valores de capacidad están comprendidos entre 0.5 pF y 47 nF. En ocasiones llevan sus datos impresos en forma de bandas de color.
No hay comentarios:
Publicar un comentario